Application of acoustic methods linear and nonlinear in chordal unilateral paralysis
Aplicación de métodos acústicos lineales y no lineales en parálisis cordales unilaterales
Main Article Content
A new methodology that combines traditional acoustic analysis and perceptual algorithms for nonlinear dynamics is presented. Specifically, Lyapunov coefficients applied to measure high disturbance’s voices. Vowel / a / isolated and sustained from 15 normal Buenos Aires Spanish speakers and 7 with unilateral paralysis of different sex and age were evaluated. The emissions were digitally recorded in an acoustic chamber with a dynamic vocal microphone and conversational speech intensity. For the measurement of the coefficients, Wolf algorithm (1985) modified by Giovanni (1999) was used. The traditional measures of perturbation jitter (Horii, 1975 and Milenkovic 1987) and perceptual scale GRBAS (Hirano, 1981) applied to evaluate the degree of severity of dysphonia. The values of Lyapunov coefficients and jitter in normal voices and paralysis were presented for comparison. The voices with highest alterations showed average Lyapunov exponents of 0.83 versus 0.46 in normal voices. The results and graphs obtained show the chaotic behavior of voice and demonstrate the clinical utility of measurement. The exponents differentiate control groups from group with paralysis.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
- Academic society
- Bogotá: Corporación Universitaria Iberoamericana
- Publisher
- Bogotá: Corporación Universitaria Iberoamericana
Article Details
Aasen, T. (1993). Chaos theory applied to the caloric response of the vestibular system. Computers and Biomedical Research (26):556-567.
Bergé, P., & Pomeau y Vidal, C. (1984). Orderwithin chaos: towards a deterministic approach to turbulence. New York: U.S.A.,Wiley.
Berry, D. A., Herzel, H., Titze, I. R., & Story, B.H. (1996). Bifurcations in excised larynx experiments. Journal of Voice (10): 29-138.
Bielamowicz, S., Kreiman, J., Gerratt, B. R.,Dauer, M. S., & Berke, G. S. (1996). Comparison of voice analysis systems for perturbation measurements. J. Speech Hear.Res. (39): 126–134.
Eckmann, J. P., & Ruelle, D. (1992). Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems.Physica D (56), 185–187.
Giovanni, A., Ouaknine, M., & Triglia, J. M.(1999). Determination of largest Lyapunovexponents of vocal signal: application to unilateral laryngeal paralysis. J. Voice (13:341-354.
Gstoettner, W., Baumgartner, W., Hamzavi, J.,Felix, D., Svozil, K., Meyer, R., y otros(1996). Auditory fractal random signals:Experimental data and clinical application.Acta Otolaryngol (116): 222-223.
Herzel, H., Berry, D., Titze, I. R., & Saleh, M.(1994). Analysis of vocal disorders with methods from nonlinear dynamics. J. Speach Hear. Res. (37): 1008-1019.
Hilborn, R. (2001). Chaos and Nonlinear Dynamics.An Introduction for Scientists and Engineers(2nd ed.). Oxford Univerity Press.
Hirano, M. (1981). Clinical Examination of thevoice. New York: U.S.A. Springer Verlag.
Holzfuss, J., & Lauterborn, W. (1989). Lyapunov exponents from a time series of acousticchaos. Phys. Rev. A (39): 2146–2152.
Horii, Y. (1979). Fundamental Frequency Perturbation Observed in Sustained Phonation.Journal of Speech and Hearing Research (22): 5-19.
Jiang, J., Zhang, Y., & Ford, C. N. (2003).Nonlinear dynamics of phonations in excised larynx experiments. J. Acoust. Soc. Am114 (4 pt1): 2198-205
Kumar, A., & Mullick, S. K. (1996). Nonlinear dynamical analysis of speech. J.Acoust.Soc. Am. (100): 615–629.
Milenkovic, P. (1987). Least mean square measures of voice perturbation. J. Speech Hear. Res. (30): 529–538.
Narayanan, S. S., & Alwan, A. A. (1995). A nonlinear dynamical systems analysis of fricative consonants. J. Acoust. Soc. Am. (97):2511.
Peitgen, H. O., Jurgens, H., & Saupe, D. (1992). Chaos and Fractals, New Frontiers of Science.New York: U.S.A. Springer-Verlag.
Titze, I. R. (1995). Workshop on acoustic voice analysis; Summary Statement. National Center for Voice and Speech, Denver.
Titze, I. R., Horii, I., & Scherer, R. C. (1987). Some technical considerations in voice perturbationmeasurements. J Speech HearingResearch (30): 252-260.
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano,J. A. (1985). Determining Lyapunov exponentsfrom a time series. Physica D (16):285–317.
Yu, P., Garrel, R., Nicollas, R., Ouaknine, M.,& Giovanni, A. (2007). Objective VoiceAnalysis in Dysphonic Patients: New Data Including Nonlinear Measurements. FoliaPhoniatr Logop , 1 (59): 20-30.
Yu, P., Ouaknine, M., & Giovanni, A. (2000).Intérêt clinique du calcul des coefficients de Lyapunov pour l’analyse objective desdysphonies. Rev. laryngol. otol. Rhinol, 5(121): 301-305.
Zhang, Y., & Jiang, J. (2003). Nonlinear dynamicanalysis of signal typing of pathologicalhuman voices. Electron. Lett. (39):1021–1023.